
Matrix Unit

consists of Tmatrix object
with modules
constructor init;
procedure load(row,column:integer;value:real);
procedure solve(var solution;count:integer);
function check:real;
destructor done;

Init initializes two pointers, m and n of the form ^array[1..800] of prow 
where prow is array[1..801] of real.  If you wish to speed up the 
object, then reduce 800 to a smaller number but make sure prow is 
always one
more. ( 200 and 201 for example).  You'll also have to change 
s:array[1..800] of real (a field in tmatrix)  and the init's new and the 
done's dispose statements.  Plus s1 in solve.

Load is used with two for, to , do loops to load m^ and n^.  This 
procedure expects a square matrix with the addition of one more 
column which represents the output array.          new matrix  
[800x801]
                                                                       | i            i   . O |           
|             |         |    |           |    |                        |  i           i     .O|
| input    |    X  |  S |     =    | O|                       | i            i    . O|
|              |        |     |           |    |                      S=solution array [800x1]
                                                                       O=output array  [800x1]
                                                                      input array[800x800] of 
coefficients to simultaneous equations.  Example of loading matrixes
m^ and n^ found in mattest.pas.

Solve uses Cholesky's method (one of fastest methods for computer 
iteration).  For solution parameter, put in solution:array[1..800] of real
or solution:array[1..x] of real if row of square matrix is x. (matrix x by x
in other words.  In count parameter, put in number of rows of matrix, 
number of coefficients of simultaneous equations in other words.
Example in Mattest.pas solves 20X20 matrix (20 simultaneous 
equations ) with no adjustment to m^ and n^ (no adjustment to code).



To see answers, write your array you put in solution out.

Check verifies that solution correct.  use a variable like a:=v.check 
where v:tmatrix.  A small number in a denotes  very little difference 
between the input matrix times the s versus the o matrix element in 
each case.   

Done is used as a final step to dispose of m and n.

Note all elements of m and n are referred to as m^[a]^[b] where a
is the row number and b is the column number.
For small matrixes, do the modifications listed above to reduce
from 800 to whatever.  800x801 represents close to 4.5 meg of 
memory for real numbers (6 bytes).  Enjoy.


